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Abstract

In many areas in industrial engineering, one may be faced with the question how an electromagnetic device has to be

designed such that both a rather complex set of requirements such as geometrical constraints has to be fulfilled, and of

which the magnetic properties has to be optimal in some sense. Given an electromagnetic design, a variety of methods

exist to compute the additional magnetic properties and hence verify the constraints. However, the problem in which

the optimal parameters are to be calculated given a set of constraints, is in general harder to solve. In this paper, we

focus on quasi-static electromagnetic problems, where the problem is to find a certain conductor shape confined to an

arbitrary but given surface, and electromagnetic properties are prescribed. Also conductive surfaces may be present,

which affect these electromagnetic properties. With some additional assumptions the shape optimization problem can

be formulated as a quadratic optimization problem with linear constraints.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

This paper discusses an approach to solving certain types of electromagnetic problems, in particular

those occurring in the design of electromagnetic or electromechanical devices. In these situations often an

electric conductor must be given a certain shape such that a number of electrical and/or magnetic properties
are optimal. Furthermore, constraints may be imposed on a number of properties, for example geometric

properties (such as maximum wire length, or all conductors contained within a certain volume), magnetic

properties (such as prescribed magnetic field) or electric properties (such as self-inductance and resistance).

Examples are the design of multi-poles used in particle accelerators and gradient coils for magnetic reso-

nance imaging devices, where the spatial distribution of the magnetic field is prescribed, and the resistance

and/or the self-inductance has to be minimal. These type of problems are often denoted as field synthesis or

shape optimization problems.
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General approaches are described in [4,5]; an overview of recent open problems can and/or be found in

[7]. Dependent of the specific characteristics of the problem, a number of dedicated approaches have been

developed. Recent examples include the design of antennas [10], gradient coils for Magnetic Resonance

Imaging (MRI) [16] and magnets for MRI [9]. These examples apply the stream function indirectly to get

the conductor shape, after determining the (surface) current density, from which the stream function is

constructed. In this paper we show that, following the approach of [14], it is more advantageous to model

the stream function directly.

Given a conductor shape such as in Fig. 1, and hence a known current distribution and material
properties, resulting electromagnetic properties can be computed. For simple geometries analytical ex-

pressions may be available, whereas for more complicated problems numerical methods have to be used,

such as Finite Element methods or Boundary Element methods [3].

In this paper, we refer to the shape optimization problem as the problem where the optimal degrees of

freedom are to be determined from a given set of constraints on the electromagnetic field, as opposed to the

problem where this electromagnetic field has to be computed from a given set of parameters. Note that the

shape optimization problem requires us to be able to handle at least the latter problem.

An often successful approach for handling the shape optimization problem consists of parameterizing
the problem, and constructing constraints for the parameters representing the physical constraints and an

objective function representing the required criterion for optimization. In the example in Fig. 1, the pa-

rameter space could be a finite subspace of the collection of all possible conductor shapes. In general this

leads to a nonlinear optimization problem. The drawback is then that, in general, physical understanding of

the problem is needed to find a good initial set of parameters, because convergence of the optimization

problem to the global optimum cannot be guaranteed in general. As a consequence, when confronted with

failing convergence, one may not be sure whether the lack of convergence was due to wrong parameters for

the optimization algorithm (such as the initial guess), or that the physical problem in combination with the
constraints indeed cannot be solved.

Another approach, which is the approach we will adopt in this paper, is to drop the restriction that the

space of admissible solutions is (a subspace of) the space of possible conductor shapes. Instead we will use

the more general space of possible current distributions. This approach can be applied if the geometrical

constraints can be translated into the restriction that the currents are restricted to be within a certain

prescribed volume. The advantage of this approach is that the collection of possible current distributions in

a volume is much simpler to approximate by a finite set of parameters. Furthermore, if the constraints are

linear in the parameters and the objective function is linear or quadratic with a positive-definite Hessian,
globally convergent and robust optimization methods which find the global optimum [8,12] can be used. In
Fig. 1. Example of a conductor shape.
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this case, failing convergence indeed indicates a conflict on the constraints, signalling the user that there is

no optimal solution.

A drawback is that the conductor shape is not found directly. This shape has to be derived from the

current distribution, a process which we denote as converting to a conductor. In this conversion process,

the electromagnetic properties are slightly modified, and it is the aim of the conversion to keep this change

minimal. In this paper, the stream function, which is a representation of the surface current distribution, is

used which makes this conversion both simple and accurate.

The stream function approach as a method of shape optimization has aspects which are similar to the
level set method [15] and the homogenization method [1]. In the level set method, the solution is represented

as the level set of a function /ðxÞ, resembling the use of the stream function. The homogenization method

replaces a complex and highly localized property by an equivalent �homogenized� field, reducing complexity

considerably and often retaining linearity of derived properties. This resembles the replacement of a

complex conductor shape by the current density. Both methods have recently been applied successfully to a

number of topological optimization problems, see for example [13].
2. Problem description

This section gives an overview of the general problem under discussion. In subsequent sections, we will

introduce simplifications which enable us to solve the problem efficiently.

The electric current is described by the current density, which is a vector field representing the velocity of

free electric charges (e.g., electrons). The current density is a time and spatially dependent vector field, and

will be denoted by Jðx; tÞ. Furthermore, two disjoint volumes Vsource and Vind are defined. Denote the union

of Vsource and Vind as V , then we require that

x 62 V :¼ Vsource [ Vind ) Jðx; tÞ ¼ 0; ð1Þ

where Vsource represents the region where currents are flowing primarily because they are driven by a voltage

source. Vind on the other hand represents regions which are not connected to a power source, but currents

(eddy currents) may be flowing here as a result Faraday�s induction law. Note that both Vsource and Vind may

consist of a finite set of mutually disjoint volumes.

We now state our objective, at first phrased in very general terms:

Problem 1 (General). Determine

Jðx; tÞ for x 2 Vsource;

where a number of constraints may be set on Jðx; tÞ in terms of the resulting electromagnetic properties.

In order to derive a robust method for this problem, we will introduce simplifications. The physical

model fulfilling these simplifications will be discussed in the following section.

First recall that after determining the current density Jðx; tÞ the conductor shape has to be derived

(conductor conversion). The strategy we choose is to require that Jðx; tÞ for x 2 Vsource can be written as

Jðx; tÞ ¼ IðtÞ~JJsourceðxÞ; x 2 Vsource; ð2Þ

in which case the conductor conversion can then be based on the static field ~JJsourceðxÞ.
Given a ~JJsourceðxÞ, x 2 Vsource, and some �test function� IðtÞ, the current density Jðx; tÞ is known both in

Vsource and Vind, and hence all related electromagnetic properties. To allow applying linear or quadratic

optimization methods, we require that the constraints on the electromagnetic properties are linear, and the



308 G.N. Peeren / Journal of Computational Physics 191 (2003) 305–321
objective function linear or quadratic in ~JJsourceðxÞ, and hence in IðtÞ. Note that minimizing inductance or

resistance is equivalent to minimizing magnetic energy and dissipation, respectively; both are quadratic

functions in Jðx; tÞ. Therefore a quadratic objective functions seems to be a natural choice. Finally, we

assume that Vsource and Vind are �thin�, and can therefore be approximated by surfaces.

This results in the following:

Problem 2. Determine

~JJsourceðxÞ for x 2 Vsource;

where ~JJsourceðxÞ is the solution of an optimization problem with a linear or quadratic objective function,

with linear constraint functions. The media are static, linear and isotropic, and Vsource and Vind are thin.

Note that the problem may be generalized by stating that more than one conductor shape (each con-

strained within a certain volume V ðiÞ
source) must be determined, that is

Determine ~JJ ðiÞ
sourceðxÞ; x 2 V ðiÞ

source; i ¼ 1; . . . ;N ;

where N is the number of conductor shapes to be determined. If the volumes are mutually disjoint, this is a
trivial extension of the method presented in this paper, and will therefore not be discussed further. Hence

we may assume only one conductor path will have to be determined.
3. Physical model

As stated in the previous section, we first consider a model involving volume currents denoted by Jðx; tÞ.
In subsequent sections, we will restrict the volume currents to be surface currents, since then a scalar
representation of the surface currents can be used, the stream function. It will be shown that the stream

function has properties which makes it very useful for numerical applications. However, the basic sim-

plifications of the model and the resulting properties can also be derived for the more general case.

Since the media are static, we can use Maxwell�s equations for stationary media (see for example [11]),

which gives the relations between the magnetic flux density Bðx; tÞ, the magnetic field strength Hðx; tÞ, the
electric flux density Dðx; tÞ, the electric field strength Eðx; tÞ, the current density (motion of free electric

charges) Jðx; tÞ and the electric charge density qðx; tÞ. Since we only a problem with good conductors we

assume that qðx; tÞ ¼ 0.
The first simplification comes from the observation that for linear and isotropic media Maxwell�s

equations relations become linear as well. This means that in this case the following constitutive relations

exist:

D ¼ �E; x 2 R3; �ðxÞ is the electric permittivity; ð3Þ
B ¼ lH ; x 2 R3; lðxÞ is the magnetic permeability; ð4Þ
J ¼ rE; x 2 Vind; rðxÞ is the conductivity: ð5Þ

Note that (5) holds only for x 2 Vind, because of (1) and that for x 2 Vsource the current density is to be

determined.

Therefore Jðx; tÞ, Hðx; tÞ and Eðx; tÞ can be used to describe all relevant vector fields, with the following

differential relations (Maxwell):
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r � ð�EÞ ¼ 0; ð6Þ
r � ðlHÞ ¼ 0; ð7Þ
r� E ¼ �l
oH

ot
; ð8Þ
r�H ¼ J þ �
oE

ot
: ð9Þ

Note that here the equations are written in differential form; the equivalent integral formulations are to be

used to analyze situations where the material properties, and hence the fields, are not continuous. Also,

from (6) and (9) the following necessary condition for Jðx; tÞ follows:

r � J ¼ 0 in R3: ð10Þ

Let Hðdiv; V Þ be the Hilbert space of vector functions defined on V of which the length and divergence

are Lebesgue measurable and square-integrable, with inner product (see also [6])

ðf ; gÞ ¼
Z
V
f ðxÞ � gðxÞdV þ

Z
V
ðr � f Þðr � gÞdV ; f ; g 2 Hðdiv; V Þ:

Denote by N 0ðdiv; V Þ the linear subspace of Hðdiv; V Þ consisting of functions with zero divergence, then

according to (10), J 2 N 0ðdiv; V Þ. Because V is compact, N 0ðdiv; V Þ is separable, so there exists a countable

set of basis functions ðbJJ nðxÞÞn2N such that every Jðx; tÞ 2 N 0ðdiv; V Þ can be written as

Jðx; tÞ ¼
X1
n¼1

InðtÞbJJ nðxÞ:

Without loss of generality we may assume that each basis function bJJ nðxÞ has its support either in Vsource or
in Vind, thus separating the indices in the sets Nsource and Nind :¼ N nNsource, respectively. In Appendix A, it

is shown that for the quasi-static case there exist numbers Mmn and Rmn such that the relation between
currents in Vsource and Vind is expressed byX1

m¼1

Mmn
dImðtÞ
dt

�
þ RmnImðtÞ

�
¼ 0; n 2 Nind; ð11Þ

where Mmn is called the mutual inductance between basis functions bJJm and bJJ n, and Rmn can analogously be

given the term mutual resistance. Problems 1 and 2 state that the source currents are to be determined; since

they are given by Jðx; tÞ ¼
P

n2Nsource
InðtÞbJJ nðxÞ for x 2 Vsource, the degrees of freedom are ðInðtÞÞn2Nsource

. Eq.

(11) defines – together with suitable boundary or periodicity conditions – the induction currents, given by

Jðx; tÞ ¼
P

n2Nind
InðtÞbJJ nðxÞ for x 2 Vind.
4. Surfaces and stream functions

The relations presented in the previous sections hold for general geometries. In practice, a situation often

occurs where the geometries have at least one dimension which is small compared to the region of interest.

In these situations, we can represent the current densities by surface currents.

From now on we shall assume that the regions Vsource and Vind are �thin� and can be described by a

finite set of simply connected, orientable, compact and piecewise smooth surfaces Sk, k ¼ 1; . . . ;K, in
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combination with a �thickness� function d :
SK

k¼1 Sk ! Rþ. The boundaries (if any) are assumed to consist of

a finite number of piecewise continuous simple closed curves Cl, l ¼ 1; . . . ; L. The collection of all surfaces

Sk is denoted by S :¼
SK

k¼1 Sk.
The surface current density is denoted by jðxÞ, x 2 S. Note that we drop the explicit dependency of time

from now on. Expressions given as volume integrals with volume current density JðxÞ can be translated into

surface integrals involving jðxÞ by substituting jðxÞ ¼ dðxÞJðxÞ and dS ¼ dV =dðxÞ.
Recall that the surface divergence of j, denoted by rS � j, is defined as

rS � jðxÞ :¼ lim
jS0 j!0
S0�S
x2S0

1

jS0j

Z
oS0
ðnðxÞ � jðxÞÞ � dl; j : S ! R3;

with jS0j denoting the area of S0. Here nðxÞ denotes the normal in x. From this point, we will write n instead

of nðxÞ, assuming implicit dependency on x.
For a surface current jðxÞ property (10) therefore translates into

rS � j ¼ 0;

which is equivalent to requiring that

/C :¼
Z
C
jðxÞ � ðdl� nÞ ¼

Z
C
ðn� jðxÞÞ � dl ¼ 0 for any closed contour C � S:

See also Fig. 2(a) for a graphical interpretation. Note that /C is the current through C, which must be zero

for a closed contour.

This property can be used to introduce a scalar field wðxÞ.

Definition 3. For every surface Sk, choose a fixed reference point ak. Then the stream function wðxÞ cor-

responding to the surface current density jðxÞ is

wðxÞ :¼
Z x

ak

ðn� jðxÞÞ � dl; x 2 Sk; ð12Þ

where the path from ak to x must lie completely in Sk (see Fig. 2(b)).

Hence wðxÞ is the current through a line on Sk from ak to x. Due to (12) wðxÞ does not depend on the

path chosen from ak to x.
If x is not at the boundary of S, then jðxÞ is given from wðxÞ by

j ¼ rw� n: ð13Þ
Fig. 2. The integration path and vectors used in the definition of the stream function.
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Applying this inverse formula would formally require that wðxÞ is defined outside S. However, only tan-

gential surface derivatives are needed. For example, is Sk is described as a parameterized mapping from a

region U � R2 to R3:

Sk : fx ¼ xðu; vÞ j ðu; vÞ 2 Ug;

then

jðxÞ ¼ ow
ov

ox

ou

�
� ow

ou
ox

ov

��
ox

ou

����� � ox

ov

�����:
Another very useful property which follows from its definition is

Corollary 4. The curves wðxÞ ¼ constant are the field lines (or stream lines) of jðxÞ.

Note that since wðakÞ ¼ 0 for ak 2 Sk, the stream function on every surface is zero in at least one point. In

general any constant may be added, which follows from (13).

Define the class of possible surface density functions stream functions on the surface S, denoted as WðSÞ,
as follows:

Definition 5. w 2 WðSÞ ()

wðxÞ is constant on Cl; l ¼ 1; . . . ; L;

wðxÞ piecewise continuously differentiable on S:
ð14Þ

We use the space of stream functions from WðSÞ as the representation of possible surface current

densities.
5. Approximating the stream function by a conductor

In this section, a possible strategy of converting a given stream function into a conductor is discussed,

showing the usefulness of the availability of a stream function. It is demonstrated by considering the surface

current density on the surface 06 x; y6 1, z ¼ 0, defined by the stream function

wðx; yÞ ¼ sinðpxÞ sinðpyÞ:

The current density is therefore

jðx; yÞ ¼ ow
oy

;

�
� ow

ox
; 0

�
¼ ð� sinðpxÞ cosðpyÞ; cosðpxÞ sinðpyÞ; 0Þ:

First note that a current through a flat conductor laid on a surface can also be represented by a stream

function; this stream function is constant outside the conductor since no current is flowing there. Fig. 3(a)

plots the y-component of the current density on the line y ¼ 0:5 (the x-components is zero on this line). The

dotted line shows the current density of a conductor with 5 separate turns, each carrying the same current

of Ic :¼ 1
5
¼ 0:2 A. The current density is assumed to be constant inside the conductor.

More interesting is the graph where the stream functions are compared (Fig. 3(b)). The stream function

of the conductor current can be chosen such that is closely follows the continuous stream function wðx; yÞ.
Note that the conductor stream function is either constant, or linear with step size �Ic. We choose the

center lines of the conductor (stream function 0.1, 0.3, 0.5, 0.7 and 0.9) such that they coincide with the



Fig. 3. Example of approximating a stream function by a conductor.
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isolines of wðx; yÞ the same value. The result is shown in Fig. 3(c). This process delivers unconnected

conductors; a practical way of converting these into one conductor is shown in Fig. 3(d).

From this example, the following general strategy for a stream function given on one surface S can be

derived:
1. Choose the �number of turns� Nturns 2 Nþ, and define the current Ic by

Ic :¼
maxx2S wðxÞ �minx2S wðxÞ

Nturns

:

2. The centerlines of the unconnected conductors are the isolines of wðxÞ with step Ic, that is

fx 2 S jwðxÞg ¼ min
x2S

wðxÞ þ n
�

� 1

2

�
Ic; n ¼ 1; . . . ;Nturns:

Note that this set contains at least Nturns disjoint closed centerlines.

3. Form unconnected conductors from the centerlines by applying an (arbitrary) width. The width can be

constrained by physical considerations, or may be subject to other optimality targets. For example, the

width can be taken as large as possible to minimize the resistance and self-inductance, or as minimal as
possible to reduce skin effects.

4. Convert the unconnected conductors into one conductor; a process as demonstrated in Fig. 3(d) can be

used.

The background behind this strategy is indicated in Fig. 4. Consider the strip w1 6wðxÞ6w2, with

w2 � w1 taken small enough so that wðxÞ is monotonous on this strip. On the line L through this strip as

shown in the figure the current density is perpendicular, and the magnitude is w0ðsÞ. Consider the quantityZ
S
jðxÞf ðxÞdS;



Fig. 4. Background of conversion strategy.
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with f ðxÞ some arbitrary function, then the contribution from L isZ s2

s1

w0ðsÞf ðsÞds ¼
Z wðs2Þ

wðs1Þ
f ðw�1ðyÞÞdy � ðw2 � w1Þf w�1 w1 þ w2

2

� �� �
according the trapezoid integration rule, with absolute error 1

12
ðw2 � w1Þ

3f 00ðfÞ.
This strategy has a lower order convergence if S consists of multiple unconnected surfaces, since the

range of wðxÞ over each surface is in general not a multiple of Ic. This condition can be imposed by ad-

ditional constraints.
6. Numerical application of stream function

In this section, we show how the stream function may be applied to solve a shape optimization problem.

The first step involves discretization of the stream function class WðSÞ (see Definition 5), that is write a

stream function as

wðx; tÞ ¼
XN
n¼1

snðtÞbwwnðxÞ; ð15Þ

where the coefficients snðtÞ are the degrees of freedom, and ðbwwnðxÞÞ
N
n¼1 2 WðSÞ is a given set of basis stream

functions. The choice of basis functions is restricted: requirement (14) that states that wðx; tÞ is constant on
each boundary must be exactly translatable into constraints on snðtÞ. If this is not the case, current will be
�lost� or �generated� at the boundary, likely resulting in computed values for the magnetic field strengthHðxÞ
with large relative error.

A number of choices are possible for the basis functions. In this paper we work out some details for the

basis functions associated with a mesh of polygons, where this mesh is in general a discretization of the

surfaces. If the N nodes are denoted as nn, n ¼ 1; . . . ;N then basis function bwwnðxÞ is chosen to be 1 in nn, 0 in

all other nodes, and furthermore to be continuous everywhere, differentiable on each polygon, and linear on

each vertex.

Let nn1 ; . . . ; nnp be the p nodes on a boundary, then requirement (14) stating that the stream function is
constant on that boundary follows from the linearity of the basis functions on each vertex, and is given by

sn1ðtÞ ¼ � � � ¼ snpðtÞ for all t:

This constraint is equivalent to replacing the basis functions bwwn1ðxÞ; . . . ; bwwnpðxÞ and coefficients

sn1ðtÞ; . . . ; snpðtÞ by one basis function bwwboundðxÞ :¼
Pp

j¼1
bwwnjðxÞ with coefficient sboundðtÞ, resulting in a re-

duction of the number of variables. Linear and quadratic functions in the variables s1ðtÞ; . . . ; sN ðtÞ remain
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linear in the reduced variables. Furthermore at least one node in every surface Sk must have a prescribed

value; this reduces the number of variables with 1. Setting this prescribed value to zero is equivalent with

omitting this variable.

We can therefore assume that the N basis functions bww1ðxÞ; . . . ; bwwN ðxÞ are normalized, meaning that for

every s1ðtÞ; . . . ; sN ðtÞ the stream function wðx; tÞ as given by (15) is zero in at least one point in every Sk, and
that (14) holds.

A number of quantities need to be computed from the basis functions bwwnðxÞ: the mutual resistance Rmn,

given by (from (A.9))

Rmn ¼
Z
S

bjjmðxÞ �bjjnðxÞ
rðxÞdðxÞ dS ð16Þ

the mutual inductance (from (A.10)):

Mmn ¼
Z
S

bAAmðxÞ �bjjnðxÞdS ¼
Z
S

bAAnðxÞ �bjjmðxÞdS;
and the magnetic field Hðx; tÞ.

Since Rmn involves integration of piece-wise continuous functions, it can be evaluated accurately using

standard quadrature rules, such as Gauss–Legendre. The vector potential bAAmðxÞ occurring in the ex-

pression for Mmn is continuous everywhere, even on the surface S. However, usually for x 2 S the com-

putation of bAAmðxÞ is not trivial. For example, is the medium has constant magnetic permeability l ¼ l0,
then

bAAmðx0Þ ¼
l0

4p

Z
S

bjjmðxÞ
kx� x0k

dS:

This types of integrals appear in commonly Boundary Element Methods. For methods to handle these type

of integrals see for example [3].

Another issue is the treatment of the relation between source and induction currents, which is for a

complete set of basic functions given by the differential equation (11). In our discretization, we apply this

differential equation to the finite set of basis functions ðbwwnðxÞÞ
N
n¼1.

Without loss of generality we can assume that the first Ns basis functions have their support of the source

region, and the remaining Ni :¼ N � Ns basis functions on the induced region. Then denote the solution

vector ½s1ðtÞ; . . . ; sN ðtÞ�T and its partitioning in Ns and Ni elements as

sðtÞ ¼ ssðtÞ
siðtÞ

� �
:

Partition the mutual inductance matrix M and resistance matrix R analogously:

M ¼ Mss Msi

Mis Mii

� �
; R ¼ Rss 0

0 Rii

� �
(the off-diagonal matrices of R are 0 because of (16) and the disjoint supports).

Then (11) is written as

Mis

dss
dt

þMii

dsi
dt

þ Riisi ¼ 0;

where Mis, Mii and Rii are positive definite because M and R are positive definite.
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The solution of the initial value problem, where tP 0 and sið0Þ is given, is

siðtÞ ¼ Ue�KtU�1sið0Þ �U

Z t

0

e�Kðt�sÞU�1M�1
ii Mis

dssðsÞ
ds

ds; tP 0; ð17Þ

where the matrices U and K ¼ diagðk1; . . . ; kNi
Þ are determined by the generalized eigenvalue problem

RiiU ¼ MiiUK:

Note that KP 0, i.e. kk P 0, k ¼ 1; . . . ;Ni.

From (17) the physical interpretation of K and U can be deduced: ki, i ¼ 1; . . . ; kNi
are the reciprocals of

the time constants and the columns of U are the corresponding modes.

Furthermore recall assumption (2), which stated that the source currents are driven by one source, that is

ssðtÞ ¼ AðtÞ~sss;

where AðtÞ is a time-dependent function (the amplitude) and ~sss is a vector that does not depend on time, and

describes the static source current distribution. Note that ~sss is the final solution we have to determine, since

this vector fully defines the source currents.

If we define, for a given AðtÞ,

aiðtÞ :¼
Z t

0

A0ðsÞe�kiðt�sÞ ds; i ¼ 1; . . . ;Ni; tP 0;

then (17) is equivalent to

siðtÞ ¼ Ue�KtU�1sið0Þ �Udiagða1ðtÞ; . . . ; aNi
ðtÞÞU�1M�1

ii Mis~sss; tP 0:

Therefore, for a fixed time t0 and amplitude function AðtÞ, siðt0Þ is linear in ~sss, and hence any property that
depends linear on the induction currents also depends linear on the source currents described by the degrees

of freedom ~sss.
Since in general aiðtÞ � 0 for kit � 1, typically only a few – depending on ki, AðtÞ and t – eigenvalues and

columns of U need to be computed to evaluate (18) with sufficient accuracy.

A simplification occurs if AðtÞ is the Heaviside function HðtÞ, defined as

HðtÞ ¼ 0 if t < 0;
1 if t > 0:

�
For this case aiðtÞ ¼ e�ki t, so (18) becomes

siðtÞ ¼ Ue�KtU�1ðsið0Þ �M�1
ii Mis~sssÞ; t > 0:

Furthermore,

sið0þÞ ¼ sið0Þ �M�1
ii Mis~sss; ð18Þ

so that for this special case the matrixes U and K do not need to be computed.
7. Example: MRI gradient coils

In this section, the use of stream functions for shape optimization problems is demonstrated by the

design of a gradient coil for an MRI system (for similar or other approaches, see for example [14,17].

Another example of the use of stream functions can be found in [2]).



Fig. 5. Precession of magnetization vector around the magnetic field vector.
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The purpose of an MRI system is to generate in vivo images of for example humans. It utilizes the

nuclear magnetic resonance effect, which is a quantum mechanic phenomenon of some nuclei, such as the

nucleus of hydrogen (proton). It has the macroscopic effect of a net volume magnetization Mðx; tÞ, and
appears when a magnetic field Bðx; tÞ is present. The magnitude of Mðx; tÞ increases and/or with the

magnitude of Bðx; tÞ and density of the nuclei. The magnetization vector precesses around the direction of

Bðx; tÞ (see Fig. 5), with a frequency which is proportional to the magnitude of Bðx; tÞ. If the magnetization

has a transversal component, an electromagnetic radiofrequency (RF) wave is emitted, which is received by

an antenna.
Positional encoding is achieved by varying Bðx; tÞ both spatially and temporally, simultaneously re-

ceiving the signal. The frequency content of the received signal at each sample moment, combined with

knowledge when the signal was received, allows for reconstruction of an image. See [18] for more infor-

mation on this subject.

In MRI systems the temporal and spatial variation of the magnetic field is performed by the gradient

coil. It usually consists of three independent electromagnetic coils, each driven by a controllable current

source (known as gradient amplifier or gradient driver). Each coil is designed to deliver a substantially

linear increasing field in a certain direction; the directions of the three coils are mutually orthogonal, and
are denoted as x, y and z. To get sufficient magnetization, a magnet is also included, which delivers a

uniform, constant and usually high magnetic field with flux density Bconst. The total magnetic field is

therefore the superposition of the magnetic field of the gradient coil and the the magnet.

Note that we use the flux density B instead of the magnetic field H ; this is customary in MRI appli-

cations. However, because we assume the absence of magnetizable materials, both quantities are simply

related by B ¼ l0H , with l0 ¼ 4p� 10�7 [H/m] being the magnetic permeability of air.

In our example (see Fig. 6) we consider a gradient coil which has to fit in a metal, cylindrically shaped

container. This container houses the (usually superconductive) magnet, and is represented by surface Sinner.
Within the gradient coil the object to be imaged (patient) is positioned on a tabletop. We choose the

gradient coil to consist of two concentric cylindrical surfaces Sinner and Souter, which are coaxial with the

container axes, and for aesthetical reasons of different length. The tabletop is flat, positioned parallel with,

and at a certain distance below the axis of symmetry. Refer to Fig. 6 for the dimensions used in our

example.

It is the objective to find the best conductor shape such that a linear increasing field in the upper di-

rection (x) is generated. Since the background field Bconst is much larger then the field of the gradient coil

Bgradðx; tÞ, which is in our example directed in the z-direction, we are allowed to consider only the z-
component of the magnetic field of the gradient coil, since kBgradðx; tÞ þ Bconstk � Bz;gradðx; tÞ þ Bz;const.

Because of this property the magnetic field is linear in the current density.



Fig. 6. Dimensions of the gradient coil in centimeters (side, front and perspective view).

G.N. Peeren / Journal of Computational Physics 191 (2003) 305–321 317
We set constraints for the following properties:

(1) Geometrical: The source currents are on the surfaces Sinner and Souter, the induction currents are on

Sshield. Note that Sshield represents the magnetic container.

(2) Magnetic field of source currents: The magnetic field of the source currents must be

substantially linear in the linearity volume (see Fig. 6). This is achieved by setting the following

constraints:

• In the point ðxcenter; 0; 0Þ the derivative oBz=ox is set to a prescribed value G, where the value of xcenter has
to be determined.We use G ¼ 10 [mT/m].

• The target field is Bzðx; y; zÞ ¼ G � ðx� dÞ; the linearity volume is

fðx; y; zÞ jx2 þ y2 þ z2 6R2
vol; xP xtableg;

where in our example Rvol ¼ 25 [cm], xtable ¼ )10 [cm].

The constraints for the linearity are generated by choosing a sufficiently large number of control points

at the boundary of the linearity volume, and requiring that the difference DBz between the realized and
target field in these points is not to exceed a certain maximum tol. This controls the image distortion in that

point, since this is equal to DBz=G6 tol=G. In our example the N/ � Nh control points and the tolerance in

the points are generated by the following pseudo code, which sets the coordinates ðx; y; zÞ and the tolerance

tol for control point ði; jÞ; i ¼ 1; . . . ;N/, j ¼ 1; . . . ;Nh:

/i :¼ 2p � i�1
N/
;

hj :¼ p � j�1

Nh
;

tol :¼ Btol;

x :¼ Rvol cos/i sin hj;
y :¼ Rvol sin/i sin hj;
z :¼ Rvol cos hj;
if x < xtable then
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Control point below tabletop; shift to tabletop, adjust tolerance

y ¼ y � xtablex ;

z ¼ z � xtablex ;

x ¼ xtable;
tol :¼ tol �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
Rvol

� �3

;

fi

We use N/ ¼ 12, Nh ¼ 7 and Btol ¼ 120 [lT], corresponding to maximally 12 mm image distortion at the

boundary of the linearity volume.

(3) Magnetic field of induction currents: We consider induction currents as a result of an instantaneous

switch of the source currents. The magnetic field generated by these currents causes image degradation, and

we require this to be minimal. This is achieved by requiring that the absolute value of the z-component of

the magnetic field generated by these induction currents at time t ¼ 0þ (see (18)) does not exceed a max-
imum value. We use the same control points as above, and a maximum value of 1 [lT].

The objective function is set to the magnetic energy of the magnetic field of the source currents. Min-

imizing this property is equivalent to requiring a minimum self-inductance. For this objective the least

electric power is needed to ramp the magnetic field from zero to a certain value, therefore the gradient coil is

optimized for fast switching of the magnetic field.

Fig. 7(a) shows the mesh of the three surfaces, which is a simple quadrilateral mesh. The total number of

quadrilaterals used is 780, the number of nodes is 882.

After optimizationwe achieve amagnetic energy of 6.646 [J], and a dissipation (assumingr � d ¼ 8:5� 10�6

[X]), equivalent with 2mm copper) of 2316 [W]. This energy is achieved for a value xcenter of 3 [cm], which turns

out to be the optimal value. The stream lines (contour lines of the stream function with step size 185 [A]) are

shown in Fig. 7(b); these lines form the requested conductor. The current through this conductor required to

generate the target derivative G ¼ ðoBz=oxÞðxcenter; 0; 0Þ ¼ 10 [mT/m] is 185 [A]. The surface Sshield is shown

transparently. Fig. 8 shows the isolines with step size 0.1 [mT] of the z-component of the magnetic flux density

in the x–y plane, z ¼ 0. Note that the density of the field lines decreases below the table top.

The electric properties can be derived from these values. The resistance is 2316=1852 ¼ 67:67 [mX], and
the self-inductance is 2� 6:646=1852 ¼ 389 [lH]. Linearly ramping the field from 0 to G in 1 [ms] requires a
maximum of 2� 6:646=ð185� 1� 10�3Þ ¼ 71:8 [V]. Note that this values assume an optimal conductor

conversion; in practice the necessary space for isolation between conductors will slightly increase the re-

sistance and self-inductance.
(a) (b)

Fig. 7. The mesh and the computed stream lines of the example (185 A/line).



Fig. 8. Iso-field lines through the central plane.
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In practice one may need to check the resulting field for compliance with the particular requirements.
For example, usually a substantially better linearity is required close to the center, which may result in

adding control points in that part of the region.
8. Conclusion

A formulation has been presented for quasi-static electromagnetic topological optimization problems

involving good conductors only, where the required solution is a conductor shape, subject to geometrical
and magnetic constraints. By broadening the class to current density distributions, and in addition assume

that the geometry is thin, a scalar stream function is used as variable to represent the surface current

density. From the stream function contour lines the conductor pattern is derived. This approach is very

suited for applications where a linear or quadratic functional, such as the energy or dissipation, has to be

optimized.
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Appendix A. Derivation of the induction equation (11)

In this appendix relation (11) is proved. Consider a basis ðbJJ nðxÞÞn2N in the separable Hilbert space of

divergence-free vector functions defined on V :¼ Vsource [ Vind. Furthermore, since Vsource \ Vind ¼ ;, we can

assume without loss of generality that the support of every basis function bJJ nðxÞ is either a subset of Vsource or
of Vind, corresponding to subscripts n 2 Nsource and n 2 Nind :¼ N nNsource respectively.

We denote the magnetic and electric field generated by basis function bJJ nðxÞ by cHH nðxÞ and bEE nðxÞ
respectively, then because of the linearity of (6)
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Hðx; tÞ ¼
X1
n¼1

InðtÞcHH nðxÞ;

Eðx; tÞ ¼
X1
n¼1

InðtÞbEE nðxÞ:
ðA:1Þ

Starting point is the law of conservation of energy, which follows from Maxwell�s equations and the vector
identity

r � ðH � EÞ ¼ E � ðr �HÞ �H � ðr � EÞ: ðA:2Þ

When integrating over R3, the left-hand side of (A.2) vanishes due to Gauss� law, and assuming that

kH � Ek ¼ oð1=kxk2Þ; kxk ! 1:

Using (8) and (9) leads to

o

ot
1

2

Z
R3

l Hðx; tÞk k2 dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Emagn

þ o

ot
1

2

Z
R3

� Eðx; tÞk k2 dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Eelec

þ
Z
R3

Eðx; tÞ � Jðx; tÞdV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pdiss

¼ 0: ðA:3Þ

The first two terms express the rate of change of the magnetic energy Emagn and electric energy Eelec re-

spectively. The third term expresses the dissipation Pdiss. At this point we assume that the second term is

negligible, i.e.

o

ot

Z
R3

� Eðx; tÞk k2 dV 	
Z
R3

Eðx; tÞ � Jðx; tÞdV :

Loosely stated this is equivalent to �k oE
ot k 	 rkEk. Then Maxwell�s equation (9) becomes

r�H ¼ J: ðA:4Þ

This is known as the quasi-static case, since (7) and (A.4) fully specify the magnetic field strength Hðx; tÞ
from the current density Jðx; tÞ without any time-derivative related equations. The electric field Eðx; tÞ is
derived from Hðx; tÞ by the remaining equations.

Then, again using (A.2), we derive that

o

ot

Z
R3

lHðx; tÞ �cHH nðxÞdV þ
Z
R3

Eðx; tÞ � bJJ nðxÞdV ¼ 0: ðA:5Þ

Recall that for x 2 Vind relation (5) can be used, so that (A.5) evaluates to

o

ot

Z
R3

lHðx; tÞ �cHH nðxÞdV þ
Z
Vind

Jðx; tÞ � bJJ nðxÞ
r

dV ¼ 0; n 2 Nind: ðA:6Þ

Substituting (A.1) leads to the (infinite) set of relations

X1
m¼1

dImðtÞ
dt

Z
R3

lcHHmðxÞ �cHH nðxÞdV
 

þ ImðtÞ
Z
Vind

bJJmðxÞ � bJJ nðxÞ
r

dV

!
¼ 0; n 2 Nind: ðA:7Þ

This is (11), with the mutual inductance between basis function m and n given by

Mmn :¼
Z
R3

lcHHmðxÞ �cHH nðxÞdV ; m; n 2 N; ðA:8Þ
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and the mutual resistance by

Rmn :¼
Z
Vind

bJJmðxÞ � bJJ nðxÞ
rðxÞ dV ; m; n 2 Nind: ðA:9Þ

Both Mmn and Rmn are symmetric. Since the magnetic energy is given by

Emagn ¼
1

2

X1
m¼1

X1
n¼1

ImðtÞInðtÞMmn;

and the dissipation in Vind by

PdissðVindÞ ¼
X

m2Nind

X
n2Nind

ImðtÞInðtÞRmn;

the matrices Mmn and Rmn are also positive definite.

Using the vector potential (defined by r� A ¼ B, r � A ¼ 0), Mmn can also be written as

Mmn ¼
Z
V

bAAmðxÞ � bJJ nðxÞdV ¼
Z
V

bJJmðxÞ � bAAnðxÞdV : ðA:10Þ

This is computationally more advantageous, since it involves integration over the bounded volume V as

opposed to the whole space as in (A.8).
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